The Smith Normal Form Distribution of A Random Integer Matrix

نویسندگان

  • Yinghui Wang
  • Richard P. Stanley
چکیده

We show that the density μ of the Smith normal form (SNF) of a random integer matrix exists and equals a product of densities μps of SNF over Z/p sZ with p a prime and s some positive integer. Our approach is to connect the SNF of a matrix with the greatest common divisors (gcds) of certain polynomials of matrix entries, and develop the theory of multi-gcd distribution of polynomial values at a random integer vector. We also derive a formula for μps and compute the density μ for several interesting types of sets. Finally, we determine the maximum and minimum of μps and establish its monotonicity properties and limiting behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smith normal form in combinatorics

This paper surveys some combinatorial aspects of Smith normal form, and more generally, diagonal form. The discussion includes general algebraic properties and interpretations of Smith normal form, critical groups of graphs, and Smith normal form of random integer matrices. We then give some examples of Smith normal form and diagonal form arising from (1) symmetric functions, (2) a result of Ca...

متن کامل

Hermite and Smith Normal Forms ofTriangular Integer Matrices

This paper considers the problem of transforming a triangular integer input matrix to canonical Hermite and Smith normal form. We provide algorithms and prove deterministic running times for both transformation problems that are linear (hence optimal) in the matrix dimension. The algorithms are easily implemented, assume standard integer multiplication, and admit excellent performance in practi...

متن کامل

Computing Hermite and Smith normal forms of triangular integer matrices

This paper considers the problem of transforming a triangular integer input matrix to canonical Hermite and Smith normal form. We provide algorithms and prove deterministic running times for both transformation problems that are optimal in the matrix dimension. The algorithms are easily implemented, assume standard integer arithmetic, and admit excellent performance in practice. The results pre...

متن کامل

Approximating the Distributions of Singular Quadratic Expressions and their Ratios

Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...

متن کامل

Fast Computation of Hermite Normal Forms of Random Integer Matrices

This paper is about how to compute the Hermite normal form of a random integer matrix in practice. We propose significant improvements to the algorithm by Micciancio and Warinschi, and extend these techniques to the computation of the saturation of a matrix. Tables of timings confirm the efficiency of this approach. To our knowledge, our implementation is the fastest implementation for computin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017